Convergence of the Derivatives of Hermite–Fejér Interpolation Polynomials of Higher Order Based at the Zeros of Freud Polynomials

YUICHI KANJIN

Department of Mathematics, College of Liberal Arts, Kanazawa University, Kanazawa 920-11, Japan

AND

Ryozi Sakai

Anjyo-Higashi Senior High School, 10 Odozuka, Kitayamazaki-cho, Anjyo, Aichi 446, Japan

Communicated by Doron S. Lubinsky

Received April 20, 1993; accepted in revised form December 19, 1993

DEDICATED TO PROFESSOR SATORU IGARI ON HIS 60TH BIRTHDAY

We shall prove pointwise convergence of the derivatives of Hermite-Fejér interpolation polynomials of higher order based at the zeros of orthonormal polynomials with respect to Freud weights $\exp(-x^m)$, m = 2, 4, 6, ... © 1995 Academic Press, Inc.

1

The purpose of this paper is to prove pointwise convergence of the derivatives of Hermite-Fejér interpolation polynomials of higher order based at the zeros of orthonormal polynomials with respect to a Freud weight of the form $\exp(-x^m)$ with an even positive integer m.

Let

$$Q(x) = \frac{1}{2}x^m$$
, $w(x) = \exp(-Q(x))$,

where m = 2, 4, 6, ... The orthonormal polynomials $p_n(w^2; x) = p_n(x) = \gamma_n x^n + \cdots$, where $\gamma_n > 0$, are defined by the relation

$$\int_{-\infty}^{\infty} p_l(x) p_n(x) w^2(x) dx = \delta_{ln}.$$
378

0021-9045/95 \$6.00

Copyright (2) 1995 by Academic Press, Inc. All rights of reproduction in any form reserved.

These polynomials were investigated by Freud, e.g., [2, 3], and recently by many authors in connection with approximation theory. For detailed references and an extensive survey, readers may refer to Nevai [11].

We denote the zeros of $p_n(x)$ by x_{kn} , k = 1, 2, ..., n, where

$$x_{1n} > w_{2n} > \cdots > x_{nn}.$$

Let v be a positive integer, and let l be a non-negative integer such that $v-1 \ge l$. For $f \in C'(\mathbf{R})$, the Hermite-Fejér interpolation polynomial $L_n(l, v; f, x)$ of order (l, v) based at the zeros $x_{1n}, ..., x_{nn}$ is defined to be the unique algebraic polynomial of degree at most vn - 1 which satisfies

$$\begin{split} L_n(l, v; f, x_{kn}) &= f(x_{kn}), \\ L'_n(l, v; f, x_{kn}) &= f'(x_{kn}), \dots \\ L_n^{(l)}(l, v; f, x_{kn}) &= f^{(l)}(x_{kn}), \dots \\ L_n^{(l+1)}(l, v; f, x_{kn}) &= 0, \dots, \\ L_n^{(v-1)}(l, v; f, x_{kn}) &= 0 \end{split}$$

for k = 1, 2, ..., n. It is known that, for every n = 1, 2, ..., k = 1, 2, ..., n and r = 0, 1, ..., v - 1, there exists a unique polynomial $h_{rkn}(v; x)$ of degree vn - 1 satisfying

$$h_{rkn}^{(j)}(v; x_{pn}) = \delta_{rj} \,\delta_{kn}, \qquad p = 1, 2, ..., n, \qquad j = 0, 1, ..., v - 1$$

(cf. [8, Chap. I, Sect. 4]). The interpolation polynomial $L_n(l, v; f, x)$ is written in the form

$$L_n(l, v; f, x) = \sum_{k=1}^n \sum_{r=0}^l f^{(r)}(x_{kn}) h_{rkn}(v; x).$$

Since $L_n(l, v; f, x) = 1$ for f(x) = 1, we see that

$$\sum_{k=1}^{n} h_{0kn}(v; x) = 1.$$

We note that $L_n(0, 1; f, x)$ is the Lagrange interpolation polynomial based at the points $x_{1n}, ..., x_{nn}$. We define the modulus of continuity of $f \in C(\mathbf{R})$ on an interval [a, b] by $\omega([a, b]; f; h) = \sup\{|f(x) - f(y)|; |x - y| \le h, x, y \in [a, b]\}, h > 0.$

Freud [4] and Nevai [9, 10] considered pointwise convergence of the Lagrange interpolation polynomials $L_n(0, 1; f, x)$ for the Hermite weight $\exp(-x^2)$, i.e., m = 2. Knopfmacher [6] estimated the rate of approximation of pointwise convergence of the polynomials $L_n(0, 1; f, x)$ for the class of

regular Freud weights which includes the weights $\exp(-x^m)$, m = 2, 4, 6, Recently, the authors [5] observed the behavior of pointwise convergence of Hermite–Fejér interpolation polynomials $L_n(0, v; f, x)$ of order (0, v) for the weights $\exp(-x^m)$, m = 2, 4, 6, ..., and showed that if v is even then for every continuous function f(x), the sequence $\{L_n(0, v; f, x)\}$ converges uniformly to f(x) on any compact interval, and showed that if v is odd then for every interval I, there exists a continuous function f(x) such that $\limsup_{n \to \infty} \max_{x \in I} |L_n(0, v; f, x)| = \infty$. On the other hand, Balázs [1] treated convergence problems of the derivatives $L_n^{(j)}(0, 1; f, x)$ of Lagrange interpolation polynomials for m = 2, and proved that $|f^{(j)}(x) - L_n^{(j)}(0, 1; f, x)| \leq C\omega(\mathbf{R}; f^{(r)}; n^{-1/2}) n^{-r/2+j} \{\log n + \exp(x^2/2)\}$ for $|x| \leq x_{1n}, j = 0, ..., r$. In this paper, we shall consider convergence problems of the derivatives $L_n^{(j)}(l, v; f, x)$ for arbitrary $v = 1, 2, ..., 0 \leq l \leq v - 1$ and m = 2, 4, 6, ...

Let q_n denote the unique positive solution of the equation $q_n Q'(q_n) = n$, that is,

$$q_n = \left(\frac{2n}{m}\right)^{1/m}.$$

Our theorem is as follows:

THEOREM. Let v be a positive integer and let l be an integer such that $v - 1 \ge l \ge 0$. Then, there exist positive constants c and K satisfying the following:

(i) The case v-1 = l: Let N be an integer such that $N \ge l$, and $f \in C^{N}(\mathbf{R})$. Then, for $|x| \le cq_{n}$,

$$\begin{aligned} |L_n^{(j)}(v-1, v; f, x) - f^{(j)}(x)| &\leq C(1+|x|^{j(m-2)/2}) e^{vx^{m/2}} \\ &\times \omega \left([-Kq_n, Kq_n]; f^{(N)}; \frac{q_n}{n} \right) \\ &\times \left(\frac{q_n}{n} \right)^N n^j \log n \\ &\qquad j = 0, 1, ..., N \qquad n = N+1, N+2, \end{aligned}$$

(ii) The case
$$v - 1 > l$$
: Let $f \in C^{l}(\mathbf{R})$. Then, for $|x| \leq cq_{n}$,
 $|L_{n}^{(j)}(l, v; f, x) - f^{(j)}(x)| \leq C(1 + |x|^{j(m-2)/2}) e^{vx^{m}/2}$
 $\times \omega \left([-Kq_{n}, Kq_{n}]; f^{(l)}; \frac{q_{n}}{n} \right)$
 $\times \left(\frac{q_{n}}{n} \right)^{l} n^{j} \log n$
 $j = 0, 1, ..., l, \qquad n = l+1, l+2,$

Here, C is a positive constant independent of n, x and f.

COROLLARY. (i) The case v-1 = l: Let $N \ge l$. If $\lim_{h \to 0} \omega(\mathbf{R}; f^{(N)}; h)$ log h = 0, then for every M > 0,

$$\lim_{n \to \infty} \max_{|x| \le M} |L_n^{(j)}(v-1, v; f, x) - f^{(j)}(x)| = 0$$

for j = 0, 1, ..., [(1 - 1/m)N] (the integral part of (1 - 1/m)N).

(ii) The case v - 1 > l: If $\lim_{h \to 0} \omega(\mathbf{R}; f^{(l)}; h) \log h = 0$, then for every M > 0,

$$\lim_{n \to \infty} \max_{|x| \le M} |L_n^{(j)}(l, v; f, x) - f^{(j)}(x)| = 0$$

for j = 0, 1, ..., [(1 - 1/m)l].

We remark that the condition $\lim_{h\to 0} \omega(\mathbf{R}; f^{(N)}; h) \log h = 0$ holds, e.g., if $f^{(N)} \in \operatorname{Lip} \alpha$, $0 < \alpha \leq 1$. We mention that Balázs [1] has obtained the estimate mentioned above for v = 1 and m = 2.

For the proof of Theorem, we need a basic estimate given in the following:

PROPOSITION. Let r = 0, 1, ..., v - 1. There exists a positive constant κ such that

$$\sum_{k=1}^{n} |h_{rkn}(v; x)| \leq C e^{v x^m/2} \left(\frac{q_n}{n}\right)^r \log n \tag{1.1}$$

for $x \in [-\kappa q_n, \kappa q_n]$ and n = 1, 2, ..., where C is a constant independent of x and n.

We remark that for m=2 and v=1 (and thus r=0), Freud [4, Theorem 1] has gotten the estimate $\sum_{k=1}^{n} |h_{0kn}(1; x)| \leq C\{\log n + \exp(x^2/2)\}.$

The proofs of Theorem and Proposition will be given in the next section. We summarize here some known results which are needed in the proofs.

(1) [6, Lemma 4.11]: (i) There exists a constant $K_1 > 0$ independent of *n* such that $x_{1n} \le K_1 q_n$, n = 1, 2, ...

(ii) There exist constants $C_1, C_2, \kappa_1 > 0$ independent of *n* and *k* such that $C_1q_n/n < x_{k-1n} - x_{kn} < C_2q_n/n$ for $x_{k-1n}, x_{kn} \in [-\kappa_1q_n, \kappa_1q_n]$.

Let $x_{(x,n)}$ denote the closest zero of $p_n(x)$ to x. If x is the midpoint of two zeros, then we define $x_{(x,n)}$ to be the closest zero of $p_n(x)$ on the left.

(II) [6, Theorem 3.7]: There exist constants C_3 , C_4 , $\kappa_2 > 0$ independent of *n* and *x* such that

$$C_{3} |x - x_{(x,n)}| \frac{n}{q_{n}} q_{n}^{-1/2} \leq |p_{n}(x)| w(x) \leq C_{4} |x - x_{(x,n)}| \frac{n}{q_{n}} q_{n}^{-1/2},$$

$$n = 1, 2, \dots \text{ for } x \text{ with } |x| \leq \kappa_{2} q_{n}.$$

(III) Bernstein's inequality [12, 4.8(51)]: Let $\Delta_n(t) = n^{-1}(1-t^2)^{1/2} + n^{-2}$. Let $R_n(t)$ be a polynomial of degree *n*. Then, for $-1 \le t \le 1$ and j = 0, 1, ...,

$$|R_n^{(j)}(t)| \leq C_5 \Delta_n(t)^{-j} \max_{|s| \leq 1} |R_n(s)|, \qquad n = 1, 2, ...,$$

where C_5 is a positive constant depending only on *j*.

(IV) [7, Corollary 1, Theorem 3]: Let $r = 0, 1, ..., and g(t) \in C^r(\mathbf{R})$. Let $R_n^*(t)$ be the polynomial of best approximation of order *n* to g(t) on the interval [-1, 1]. Then, for $|t| \leq 1$,

(i)
$$|g^{(j)}(t) - R_n^{*(j)}(t)| \leq C_6 n^{-r} \Delta_n(t)^{-j} E_{n-r}(g^{(r)}; [-1, 1]),$$

 $j = 0, 1, ..., r, n = r + 1, r + 2.$
(ii) $|R_n^{*(j)}(t)| \leq C_7 n^{-r} \Delta_n(t)^{-j} \omega \left([-1, 1]; g^{(r)}; \frac{1}{n}\right),$
 $j = r + 1, r + 2, ..., n = 1, 2, ...,$

where C_6 is a positive constant depending only on r and C_7 is a positive constant depending only on j, and $E_{n-r}(g^{(r)}; [-1, 1]) = \max_{|t| \le 1} |g^{(r)}(t) - T_{n-r}^*(t)|$, where $T_{n-r}^*(t)$ is the polynomial of best approximation of degree n-r to $g^{(r)}(t)$.

Throughout this paper, the letters $C_1 \sim C_6$, K_1 , κ_1 , κ_2 with subscript are always the constants in the properties (I) ~ (IV). For the rest of the paper, the letter C denotes a positive constant which may differ at each different occurrence, even in the same chain of inequalities.

2

Let $l_{kn}(x)$, k = 1, 2, ... be the fundamental polynomial of Lagrange interpolation polynomial $L_n(0, 1; f, x)$, that is, $l_{kn}(x) = h_{0kn}(1; x)$. Then,

$$l_{kn}(x) = \frac{p_n(x)}{(x - x_{kn}) p'_n(x_{kn})}, \qquad k = 1, 2, ..., n.$$
(2.1)

We note that $h_{rkn}(v; x)$ is divided by $l_{kn}^{v}(x) (= \{l_{kn}(x)\}^{v})$ and $x = x_{kn}$ is a root with multiplicity r of $h_{rkn}(v; x)$. We define $e_{ir}(v; k, n)$, i = r, r+1, ..., v-1 to be the coefficients in the expression

$$h_{rkn}(v; x) = l_{kn}^{\nu}(x) \sum_{i=r}^{\nu-1} e_{ir}(v; k, n)(x - x_{kn})^{i},$$

$$k = 1, 2, ..., n.$$
(2.2)

After this, if there is no possibility of misunderstanding, we write briefly

$$\begin{aligned} x_k &= x_{kn}; \qquad L_n(x) = L_n(l, v; f, x); \qquad h_{rk}(x) = h_{rkn}(v; x); \\ l_k(x) &= l_{kn}(x); \qquad e_{ir}(k) = e_{ir}(v; k, n); \qquad \omega(h) = \omega([a, b]; f; h). \end{aligned}$$

We first prove the Proposition. By (2.1) and (2.2), we have

$$\sum_{k=1}^{n} |h_{rk}(x)| \leq \sum_{i=r}^{\nu-1} \sum_{k=1}^{n} \left| \frac{p_n(x)}{(x-x_k) p'_n(x_k)} \right|^{\nu} |e_{ir}(k)| |x-x_k|^i$$
$$:= \sum_{i=r}^{\nu-1} \sum_{k=1}^{n} R_k(i, r, n; x).$$

Our task is to estimate $\sum_{k=1}^{n} R_k(i, r, n; x)$. To do so, we shall divide the sum into three parts. Here, we need a lemma on the behavior of $p'_n(x)$ in a neighborhood of x_k .

LEMMA 1 [5, Lemma 1]. There exist constants $\tilde{\delta} > 0$ and $\tilde{\kappa} > 0$ such that $k < n, x_k \in [-\tilde{\kappa}q_{n-1}, \tilde{\kappa}q_{n-1}]$ and $x_k - \tilde{\delta}q_n/n \le x \le x_k + \tilde{\delta}q_n/n$, then

$$C\frac{n}{q_n}q_n^{-1/2}w(x_k)^{-1} \leq |p'_n(x)| \leq C\frac{n}{q_n}q_n^{-1/2}w(x_k)^{-1},$$

where C is independent of k, n and x.

By (I), we may suppose that the constant $\tilde{\kappa}$ satisfies $x_n < -\tilde{\kappa}q_n$ and $\tilde{\kappa}q_n < x_1$. Let κ be a positive constant such that $\kappa < \tilde{\kappa}$, and let $x \in [-\kappa q_n, \kappa q_n]$. We choose δ so that $0 < \delta < \min\{C_1/2, \tilde{\delta}\}$ where $\tilde{\delta}$ and C_1 are the constants in the lemma and in (I), (ii), respectively. Let

$$J = \{k; |x - x_k| < \delta q_n / n\},$$

$$J(j) = \{k; j \, \delta q_n / n \le |x - x_k| < (j + 1) \, \delta q_n / n, |x_k| \le \kappa q_n\},$$

$$j = 1, 2, ...,$$

$$I = \{k; \, \delta q_n / n \le |x - x_k|, \, \kappa q_n < |x_k|\}.$$

The sets J, J(j) and I may depend on x and n. The set J contains at most one element and each of the sets J(j), j = 1, 2, ... contains at most two elements, and $\{1, 2, ..., n\} = \bigcup_{j=0}^{\lambda(n)} J(j) \cup J \cup I$, where $\lambda(n)$ is the smallest number exceeding $2K_1 n/\delta$. Here, K_1 is the constant in (1), (i). Let

$$\sum_{1} = \sum_{k \in J} R_{k}(i, r, n; x), \qquad \sum_{2} = \sum_{j=1}^{\lambda(n)} \sum_{k \in J(j)} R_{k}(i, r, n; x),$$
$$\sum_{3} = \sum_{k \in J} R_{k}(i, r, n; x).$$

Then, $\sum_{k=1}^{n} R_k(i, r, n; x) = \sum_1 + \sum_2 + \sum_3$. To estimate \sum_p , p = 1, 2, 3, we need bounds of the coefficients $e_{ir}(k)$ in (2.2). We shall get the bounds by using the following estimate:

LEMMA 2 [5, Lemma 5]. Let v be a positive integer, and let s = 0, 1, Then,

$$|\{l_k^{\nu}(x)\}^{(s)}|_{x=x_k}| \leq CM_n(x_k)^{\langle s \rangle} q_n^{(s-\langle s \rangle)(m-1)}, \qquad k=1, 2, ..., n.$$

where $\langle s \rangle = 1$ (s: odd), $\langle s \rangle = 0$ (s: even), and $M_n(x_k) = \max\{|x_k| q_n^{-2}, |x_k|^{m-1}\}$, and C is independent of n and k.

LEMMA 3. For k = 1, 2, ..., n and r = 0, 1, ..., v - 1,

$$|e_{ir}(v;k,n) \leq C\left(\frac{q_n}{n}\right)^{r-i}, \quad i=r,r+1,...,v-1,$$

where C is independent of n and k.

Proof. We prove this by induction on *i*. From $h_{rk}^{(r)}(x_k) = 1$ and (2.2), it follows that $e_{rr}(k) = 1/r!$. Thus, the case i = r holds. By (2.2) and the fact $h_{rk}^{(i)}(x_k) = 0, r+1 \le i \le v-1$, we easily see

$$e_{ir}(k) = -\sum_{s=r}^{i-1} \frac{1}{(i-s)!} e_{sr}(k) (l_k^v)^{(i-s)}(x_k), r+1 \le i \le v-1,$$

Since $M_n(x_k) \leq Cq_n^{m-1}$ by (I), (i), it follows from Lemma 2 that $|(I_k^v)^{(s)}(x_k)| \leq Cq_n^{s(m-1)} \leq C(q_n/n)^{-s}$ for every s, where C is independent of n and k. This inequality and the assumption of induction lead to

$$|e_{ir}(k)| \leq C \sum_{s=r}^{i-1} |e_{sr}(k)| |(l_k^{\nu})^{(i-s)}(x_k)| \\ \leq C \sum_{s=r}^{i-1} \left(\frac{q_n}{n}\right)^{r-s} \left(\frac{q_n}{n}\right)^{-(i-s)} \leq C \left(\frac{q_n}{n}\right)^{r-i},$$

where C is independent of n and k.

Q.E.D.

We continue the proof of Proposition. We first estimate \sum_{1} . We may assume $J \neq \emptyset$. Then, by (I), (i), $J = \{k(x)\}$, where k(x) is the number satisfying $x_{k(x)n} = x_{(x,n)}$. The number k(x) may depend on *n*. Since $|x - x_{k(x)}| \leq \delta q_n/n$, it follows from Lemma 3 and the mean value theorem that $\sum_{1} = R_{k(x)}(i, r, n; x) \leq C |p'_n(\xi)/p'_n(x_{k(x)})|^{\vee} \cdot (q_n/n)^r$, where *C* is independent of *n* and *x*, and ξ is between *x* and $x_{k(x)}$. Since $\kappa < \tilde{\kappa}$ and $x \in [-\kappa q_n, \kappa q_n]$, it follows that $x_{k(x)} \in [-\tilde{\kappa} q_{n-1}, \tilde{\kappa} q_{n-1}]$ for $n \geq n_0$, where n_0 is a number depending only on κ , $\tilde{\kappa}$ and *m*. By Lemma 1, we have $|p'_n(\xi)/p'_n(x_{k(x)})| \leq C$ for $n \geq n_0$ since $|\xi - x_{k(x)}| \leq |x - x_{k(x)}| \leq \delta q_n/n \leq \delta q_n/n$. Therefore, we have

$$\sum_{n \in C(q_n/n)^r} \tag{2.3}$$

for $x \in [-\kappa q_n, \kappa q_n]$ and $n \ge n_0$, where C is independent of n and x.

We next treat \sum_{2} . Let $1 \le j \le \lambda(n)$ and $k \in J(j)$. By Lemma 3, we have $R_k(i, r, n; x) \le Cj^i | p_n(x)/\{(x - x_k) p'_n(x_k)\}|^{\nu} (q_n/n)^r$ with C independent of n, x and j. We assume $\kappa < \min\{\kappa_1, \kappa_2\}$, where κ_1 and κ_2 are the constants in (I), (ii) and (II), respectively. By (I), (ii), we see that there exists a number n_1 such that if $n \ge n_1$, then $|x - x_{(x,n)}| \le C_2 q_n/n$ for $x \in [-\kappa q_n, \kappa q_n]$, where n_1 depends only on κ, κ_1 and κ_2 . Thus, by (II) we have

$$|p_n(x)| \leq Cw(x)^{-1} q_n^{-1/2}, \quad x \in [-\kappa q_n, \kappa q_n], n \geq n_1.$$
 (2.4)

Since there exists a number n_2 depending only on κ , $\tilde{\kappa}$ and m such that $[-\kappa q_n, \kappa q_n] \subset [-\tilde{\kappa} q_{n-1}, \tilde{\kappa} q_{n-1}]$ for $n \ge n_2$, it follows from Lemma 1 that $|(x - x_k) p'_n(x_k)|^{-1} \le C j^{-1} q_n^{1/2} w(x_k)$ for $k \in J(j)$ and $n \ge n_2$. Thus, $R_k(i, r, n; x) \le C \{w(x_k)/w(x)\}^v j^{i-v}(q_n/n)^r \le C w(x)^{-v} j^{-1} \cdot (q_n/n)^r$ for $x \in [-\kappa q_n, \kappa q_n]$ and $n \ge \max\{n_1, n_2\}$. Since every J(j) has at most two elements, it follows that

$$\sum_{2} \leq C \left(\frac{q_n}{n}\right)^r w(x)^{-\nu} \sum_{j=1}^{\lambda(n)} j^{-1} \leq C w(x)^{-\nu} \left(\frac{q_n}{n}\right)^r \log n \tag{2.5}$$

for $x \in [-\kappa q_n, \kappa q_n]$ and $n \ge \max\{n_1, n_2\}$, where C is independent of n and x.

Lastly, we estimate \sum_{3} . Let $k \in I$ and $x \in [-\kappa q_n, \kappa q_n]$. Since $|x - x_k| \leq (\kappa + K_1) q_n$ for every k, it follows from Lemma 3 that $R_k(i, r, n; x) \leq C |p_n(x)/\{(x - x_k) p'_n(x_k)\}|^{\nu} (q_n/n)^{r-i} q_n^i$ with C independent of x and n. By (2.4) and $|x - x_k| \geq \delta q_n/n$, we have $R_k(i, r, n; x) \leq C w(x)^{-\nu} n^{\nu - r + i} q_n^{r-3\nu/2} |p'_n(x_k)|^{-\nu}$ and thus,

$$\sum_{3} \leq Cw(x)^{-\nu} n^{\nu-r+i} q_{n}^{r-3\nu/2} \sum_{k \in I} |p'_{n}(x_{k})|^{-\nu}$$

for $x \in [-\kappa q_n, \kappa q_n]$, where C is independent of n and x. The sum $\sum_{k \in I} |p'_n(x_k)|^{-\nu}$ is treated by the following lemma.

Let λ_{kn} , k = 1, 2, ... be the Cotes numbers which appear in the Gauss-Jacobi quadrature formula

$$\sum_{k=1}^{n} p(x_{kn}) \lambda_{kn} = \int_{-\infty}^{\infty} p(x) w^{2}(x) dx$$

valid for all polynomials p(x) of degree at most 2n-1 (cf. [11]).

LEMMA 4 [5, Lemma 7]. Let $\tau > 0$. Then,

$$\sum_{|x_k| \ge \tau q_n} p'_n(x_k)^{-2} \leqslant C q_n^{-2m+3} w^2(\tau q_n),$$

where C is independent of n.

By the lemma and $v/2 \ge 1$, we have

k

$$\sum_{k \in I} |p'_n(x_k)|^{-\nu} \leq \left\{ \sum_{k \in I} |p'_n(x_k)|^{-2} \right\}^{\nu/2} n^{1/2}$$
$$\leq C \{ q_n^{-2m+3} w^2(\kappa q_n) \}^{\nu/2} n^{1/2} = C q_n^{(-2m+3)\nu/2} e^{-\mu m} n^{1/2},$$

where C is independent of n and x, and $\mu = v\kappa^m m^{-1}$. Therefore, we have

$$\sum_{3} \leqslant Cw(x)^{-\nu} \left(\frac{q_n}{n}\right)^r e^{-\mu n} n^{i+1/2}$$
(2.6)

for $x \in [-\kappa q_n, \kappa q_n]$, where C is independent of n and x. The proof of Proposition is concluded by combining (2.3), (2.5) and (2.6).

We remark that by a more refined estimate on \sum_2 we can get $\sum_{k=1}^{n} |h_{rkn}(v; x)| \leq C\{x^{m-1}w(x)^{-\nu} + \log n\}(q_n/n)^r$ for $x \in [-\kappa q_n, \kappa q_n]$. For the sake of brevity, we omit details.

The fundamental estimate (1.1) established now allows us to prove the Theorem. Let N be a non-negative integer, and let λ and μ be constants such that $0 < \lambda < \mu$. Let $P^*(x)$ be the polynomial of best approximation of order n-1 to $f \in C^N(\mathbf{R})$ on the interval $[-\mu q_n, \mu q_n]$. We put $g(t) = f(\mu q_n t)$ and $R^*(t) = P^*(\mu q_n t)$. Then, we note that $R^*(t)$ is the polynomial of best approximation of order n-1 to g(t) on the interval [-1, 1]. Applying (IV), (i) and changing variable $x = \mu q_n t$, we have

$$|g^{(j)}(t) - R^{*(j)}(t)| = (\mu q_n)^j |f^{(j)}(x) - P^{*(j)}(x)|$$

$$\leq C_6 (n-1)^{-N} \left\{ \mathcal{A}_{n-1} \left(\frac{x}{\mu q_n} \right) \right\}^{-j}$$

$$\times (\mu q_n)^N E_{n-1-N} (f^{(N)}; [-\mu q_n, \mu q_n])$$

$$\leq C (n-1)^{-N} \left\{ \mathcal{A}_{n-1} \left(\frac{x}{\mu q_n} \right) \right\}^{-j}$$

$$\times (\mu q_n)^N \omega \left([-\mu q_n, \mu q_n]; f^{(N)}; \frac{q_n}{n} \right)$$

for j = 0, 1, ..., N, n-1 > N and $|x| \le \mu q_n$, where *C* is a constant depending only on μ and *N*. Here, we used Jackson's theorem (cf. [12, 5.1(1)]) and the fact $E_{n-1-N}(g^{(N)}; [-1, 1]) = (\mu q_n)^N \cdot E_{n-1-N}(f^{(N)}; [-\mu q_n, \mu q_n])$. For $|x| \le \lambda q_n$, we have $d_{n-1}(x/(\mu q_n)) \ge (n-1)^{-1} \{1 - (\lambda/\mu)^2\}^{1/2}$. Thus, if $0 < \lambda < \mu$, then for $|x| \le \lambda q_n$,

$$|f^{(j)}(x) - P^{\star(j)}(x)| \leq C \left(\frac{q_n}{n}\right)^{N-j} \omega\left(\left[-\mu q_n, \mu q_n\right]; f^{(N)}; \frac{q_n}{n}\right), \quad (2.7)$$

for j = 0, 1, ..., N and n-1 > N, where C is a constant depending only on N, λ and μ .

Let $\delta(x) = |x| + 1$ for $|x| \le 1$ and $\delta(x) = |x| + |x|^{1-m}$ for |x| > 1. The function $\delta(x)$ has first been introduced by [1] for the case m = 2. Let $x \in \mathbf{R}$ be fixed. We apply (III) to the polynomial $R(t) = L_n(\delta(x)t) - P^*(\delta(x)t)$ of degree at most m-1. Then, we have $|R^{(j)}(t)| \le C_5 \Delta_{m-1}(t)^{-j} \max_{|s| \le 1} |R(s)|$ for j = 0, 1, ... and $|t| \le 1$. We use this inequality for $t = x/\delta(x)$. Then, we easily see that for j = 0, 1, ...,

$$|L_{n}^{(j)}(x) - P^{*(j)}(x)|$$

$$\leq C_{5} \left\{ \delta(x) \, \mathcal{A}_{yn-1}\left(\frac{x}{\delta(x)}\right) \right\}^{-j} \max_{|u| \leq \delta(x)} |L_{n}(u) - P^{*}(u)|$$

$$\leq C \frac{n^{j}}{(\delta(x)^{2} - x^{2})^{j/2}} \max_{|u| \leq \delta(x)} |L_{n}(u) - P^{*}(u)|$$

$$\leq C(1 + |x|^{j(m-2)/2}) n^{j} \max_{|u| \leq \delta(x)} |L_{n}(u) - P^{*}(u)|, \qquad (2.8)$$

where C is a constant depending only on j and v. Let K be a constant such that $K_1 < K$, and let c be a constant such that $0 < c < \min\{K_1, \kappa\}$, where

 K_1 and κ are the constants in (I), (i) and Proposition, respectively. By (2.7) and (2.8), we have, for $|x| \leq cq_n$ and j = 0, 1, ..., N,

$$|L_{n}^{(j)}(x) - f^{(j)}(x)|$$

$$\leq |L_{n}^{(j)}(x) - P^{*(j)}(x)| + |P^{*(j)}(x) - f^{(j)}(x)|$$

$$\leq C \left\{ (1 + |x|^{j(m-2)/2}) n^{j} \max_{|u| \leq \delta(x)} |L_{n}(u) - P^{*}(u)| + \left(\frac{q_{n}}{n}\right)^{N-j} \omega([-Kq_{n}, Kq_{n}]; f^{(N)}; \frac{q_{n}}{n}) \right\}, \qquad (2.9)$$

where C is a constant independent of n, x and f.

It is enough to estimate $|L_n(u) - P^*(u)|$ for $|u| \le \delta(x)$. Since the degree of $P^*(u)$ does not exceed vn - 1, it follows that $L_n(v - 1, v; P^*, u) = P^*(u)$, which leads to

$$L_{n}(u) - P^{*}(u) = L_{n}(u) - L_{n}(v - 1, v; P^{*}, u)$$

= $\sum_{k=1}^{n} \sum_{r=0}^{l} \{ f^{(r)}(x_{k}) - P^{*(r)}(x_{k}) \} h_{rk}(u)$
- $\sum_{k=1}^{n} \sum_{r=l+1}^{v-1} P^{*(r)}(x_{k}) h_{rk}(u).$ (2.10)

We note that if v - 1 = l, then the second sum vanishes. Let N be an integer such that $l \le N$. Since $|x_k| \le K_1 q_n$ for all k by (I), (i), it follows from (2.7) that for k = 1, 2, ..., n and r = 0, 1, ..., l,

$$|f^{(r)}(x_k) - P^{*(r)}(x_k)| \leq C \left(\frac{q_n}{n}\right)^{N-r} \omega\left([-Kq_n, Kq_n]; f^{(N)}; \frac{q_n}{n}\right),$$
(2.11)

where C is a positive constant depending only on N, K_1 and K. If r > l, then by (IV), (ii) and by changing variables,

$$|P^{*(r)}(x_k)| \leq C\left(\frac{q_n}{n}\right)^{l-r} \omega\left(\left[-Kq_n, Kq_n\right]; f^{(l)}; \frac{q_n}{n}\right), \qquad (2.12)$$

for k = 1, 2, ..., n, where C is a positive constant depending only on r, K_1 and K. Applying the estimates (2.11) and (2.12) to the expression (2.10), we have

$$|L_{n}(u) - P^{*}(u)| \leq \begin{cases} C\omega_{N}\left(\frac{q_{n}}{n}\right)\sum_{r=0}^{\nu-1}\left(\frac{q_{n}}{n}\right)^{N-r}\sum_{k=1}^{n}|h_{rk}(u)| & (\nu-1=l), \\ C\omega_{l}\left(\frac{q_{n}}{n}\right)\sum_{r=0}^{\nu-1}\left(\frac{q_{n}}{n}\right)^{l-r}\sum_{k=1}^{n}|h_{rk}(u)| & (\nu-1>l), \end{cases}$$

$$(2.13)$$

where C is a constant independent of n, x and f, and $\omega_j(q_n/n)$ stands for $\omega([Kq_n, Kq_n]; f^{(j)}; q_n/n)$. Note that there exists a number n_0 such that if $n \ge n_0$ then $\delta(x) \le \kappa q_n$ for x with $|x| \le cq_n$. Then, by Proposition and the inequality $\max_{|u| \le \delta(x)} e^{\nu u^m/2} \le C e^{\nu x^m/2}$ with C independent of x, we completes the proof of Theorem.

REFERENCES

- 1. K. BALÁZS, Convergence of the derivatives of Lagrange interpolating polynomials based on the roots of Hermite polynomials, J. Approx. Theory 53 (1988), 350-353.
- 2. G. FREUD, Über die (C, 1)-Summen der Entwicklungen nach orthogonalen Polynomen, Acta Math. Acad. Sci. Hungar. 14 (1963), 197-208.
- 3. G. FREUD, On weighted polynomial approximation on the whole real axis, Acta Math. Acad. Sci. Hungar. 20 (1969), 223-225.
- 4. G. FREUD, Lagrangesche Interpolation über die Nullstellen der Hermiteschen Orthogonalpolynome, Studia Sci. Math. Hungar. 4 (1969), 179-190.
- Y. KANJIN AND R. SAKAI, Pointwise convergence of Hermite-Fejér interpolation of higher order for Freud weights, *Tôhoku Math. J.* 46 (1994), 181–206.
- A. KNOPFMACHER, Pointwise convergence of Lagrange interpolation based at the zeros of orthonormal polynomials with respect to weights on the whole real line, J. Approx. Theory 51 (1987), 231-253.
- 7. D. LEVIATAN, The behavior of the derivatives of the algebraic polynomials of best approximation, J. Approx. Theory 35 (1982), 169-176.
- 8. I. P. NATANSON, Interpolation and approximation quadratures, "Constructive Function Theory," Vol. III, Ungar, New York, 1965.
- 9. P. NEVAI, On Lagrange interpolation based on the roots of Hermite polynomials, Acta Math. Acad. Sci. Hungar. 24 (1973), 209-213. [in Russian]
- P. NEVAI, Local theorems on the convergence of Lagrange interpolation based on the roots of Hermite polynomials, *Acta Math. Acad. Sci. Hungar.* 25 (1974), 341-361. [in Russian]
- P. NEVAI, Géza Freud, orthogonal polynomials and Christoffel functions. A case study, J. Approx. Theory 48 (1986), 3-167.
- A. F. TIMAN, "Theory of Approximation of Functions of a Real Variable," Macmillan, New York, 1963.