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1

The purpose of this paper is to prove pointwise convergence of the
derivatives of Hermite-Fejer interpolation polynomials of higher order
based at the zeros of orthonormal polynomials with respect to a Freud
weight of the form exp( _xm

) with an even positive integer m.
Let

11'(X) = exp( - Q(x)),

where m=2,4,6, .... The orthonormal polynomials Pn(w 2;x)=Pn(x)=

Yn xn + "', where Yn > 0, are defined by the relation

r p,(x) Pn(x) w2(x) dx = bin'
-·x
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These polynomials were investigated by Freud, e.g., [2, 3], and recently by
many authors in connection with approximation theory. For detailed
references and an extensive survey, readers may refer to Nevai [11].

We denote the zeros of p,,(x) by X k", k = 1,2, ... , n, where

X1,,>W2,,> ... >xm,·

Let v be a positive integer, and let 1 be a non-negative integer such that
v - I ~ l. For f E C'(R), the Hermite-Fejer interpolation polynomial
L,,(I, v; f, x) of order (I, v) based at the zeros XI'" ... , X"" is defined to be the
unique algebraic polynomial of degree at most vn - 1 which satisfies

L ~I + 1)(1, v; f, x kt,) = 0, ...,

L;,v - 1)( I, v; f, x k ,,) = 0

for k = 1, 2, ... , n. It is known that, for every n = 1, 2, ..., k = 1,2, ... , nand
r = 0, 1, ..., v - I, there exists a unique polynomial hrk,,( v; x) of degree vn - I
satisfying

p = 1, 2, ... , n, j = 0, 1, ... , v-I

(cf. [8, Chap. I, Sect. 4]). The interpolation polynomial L,,( I, v; f, x) IS

written in the form

" I
L,,(I, v; f, x) = L I jlrl(Xk") hrk"(~'; x).

k~ I r~O

Since L,,(I, v;j, x) = 1 for fix) = 1, we see that

"2: hOk"(v;x)=l.
k~1

We note that L,,( 0, I; f, x) is the Lagrange interpolation polynomial based
at the points X1"'''''''.'"n- We define the modulus of continuity offEC(R)
on an interval [a,b] by w([a,b];j;h)=sup{lf(x)-f(Y)I; Ix-yl~h,

x, y E [a, b]}, h > O.
Freud [4] and Nevai [9, 10] considered pointwise convergence of the

Lagrange interpolation polynomials L,,(O, I; f, x) for the Hermite weight
exp( - x 2

), i.e., m = 2. Knopfmacher [6] estimated the rate of approximation
of pointwise convergence of the polynomials L,,(O, I; f, x) for the class of
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regular Freud weights which includes the weights exp( - x"'), m = 2, 4, 6, ....
Recently, the authors [5] observed the behavior of pointwise convergence of
Hermite-Fejer interpolation polynomials L,,(O, v; f, x) of order (0, v) for the
weights exp( - x"'), m = 2, 4, 6, ... , and showed that if v is even then for every
continuous functionf(x), the sequence {L,.(O, v; f, x)} converges uniformly to
f(x) on any compact interval, and showed that if v is odd then for every inter­
val /, there exists a continuous function fix) such that lim sup" 4'£ max, E /

IL,,(O, v; f, x)1 = w. On the other hand, Balazs [1] treated convergence
problems of the derivatives L ;,iI( 0, I; j; x) of Lagrange interpolation
polynomials for m= 2, and proved that Ifl)(:rj - L;/)(O, 1; f, xli ::(
Cw( R; prj; n - 1/2) n -T/2 + ){Iog n +exp( x 2j2)} for Ixl ::( x II") = 0, ... , r. In this
paper, we shall consider convergence problems of the derivatives
L;,1 '( I, v; j; x) for arbitrary v = 1, 2, ... ,0 ::( 1::( I' - 1 and m = 2, 4, 6, ....

Let q" denote the unique positive solution of the equation q" Q'(q,,) = n,
that is,

= (211) 1/11/
q" .m

Our theorem is as follows:

THEOREM. Let v be a positive integer al1d let I be an integer such that
v - I ~ I~ O. Then, there exist positive constants c and K satisjving the following:

(i) The case v - I = I: Let N be an integer such that N ~ I, and
fE CN(R). Then,for Ixl::( cq",

IL:/I( v - I, v; f, x) - fl)l(X)[ ::( C( I + Ixl )1111- 21/2) e,·,J"/2

([ J(, V]. fiN,. q,,)x W - q", I\.q", , -;;

(
q )N

X n" n) log n

j=O,I, ... ,N n=N+I,N+2, ....

(ii) The case v-I >/: LetfEC/(R). Then, for Ixl ::(cq",

IL~)(l, v; f, x) - P)(x)l::( C( 1+ Ixl)('" 21/2) eV'~/2

([ K K ] . fi/). q,,)
xw - q", q", '-;;

j = 0, I, ..., I, n=l+ 1, 1+2, ....

Here, C is a positive constant independent of n, x and f
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COROLLARY. (i) The case v -l = I: Let N~ I. If lim il -0 w(R; f(1'>'1; h)
log h = 0, then for every M> 0,

lim max IL~)(v - I, v; f, x) - f<}l(xl! = °
n-GC· Ixl~M

for j=O, l, ... , [(l-l/m)N] (the integral part of(l-l/m)N).

(ii) The case v - 1 > I: If lim il _ 0 W(R;j(/I; h) log h = 0, then for every
M>O,

lim max IL::l(/, v;f, x) - fU)(x)1 = °
n __ ,x:., )xl ~ M

for j = 0, 1, ..., [(I - 11m) I].

We remark that the condition lim,,_ow(R;jIN);h)logh=O holds, e.g.,
if p N) E Lip IX, 0< IX ~ I. We mention that Balazs [I] has obtained the
estimate mentioned above for II = 1 and m = 2.

For the proof of Theorem, we need a basic estimate given in the
following:

PROPOSITION. Let r = 0, I, ... , II - l. There exists a positive constant K
such that

(l.l )

for x E [ -Kqll' Kqll] and n = 1,2, ..., '.'.'here C is a constant independent of x
and n.

We remark that for m=2 and v=1 (and thus r=O), Freud [4,
Theorem I] has gotten the estimate LZ~llhokll(l;x)I~C{logn+

exp( x 2/2) } .
The proofs of Theorem and Proposition will be given in the next section.

We summarize here some known results which are needed in the proofs.

(I) [6, Lemma 4.ll]: (i) There exists a constant K J > 0 inde­
pendent of n such that XIII ~ K 1 qll' n = l, 2, ....

Oi) There exist constants C], C2 , K} > °independent of nand k
such that C1qnln < Xk - 11l - Xkll < C 2 qllin for Xk _ I,,, Xk" E [ -K, q", K] q,,].

Let X lx. 1I1 denote the closest zero of p,,(x) to x. If x is the midpoint of
two zeros, then we define Xix.,,) to be the closest zero of p,,(x) on the left.
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(II) [6, Theorem 3.7J: There exist constants C"C4 ,K2 >O
independent of n and x such that

n = 1, 2, ... for x with Ixl ~ K 2 Q".

(III) Bernstein's inequality [12, 4.8(51)J: Let d,.(t)=n- 1(l-t 2 )1/2

+ n -2. Let R" (t) be a polynomial of degree n. Then, for -1 ~ t ~ 1 and
j= 0, I, ... ,

n = 1,2, ... ,

(ii)

where Cs is a positive constant depending only on j.

(IV) [7, Corollary 1, Theorem 3]: Let r = 0, 1, ... , and g(t) E C(R).
Let R,~(t) be the polynomial of best approximation of order n to g( t) on
the interval [ -1, 1]. Then, for Itl ~ 1,

(i) Iglj)(t) - R,~Ij)(t)1 ~ C 6 n- r A,,(t) -lE" _r(glr); [ -1,1 J),

j=0,1, ... ,r,l1=r+l,r+2.

IR,~(j)(t)1 ~ C7 n- r A,,(t)-j w ([ -1,1 J;glrl; D,
j = r + 1, r + 2, ... , n = 1, 2, ... ,

where C6 is a positive constant depending only on rand C7 is a positive
constant depending only onj, and En_r(glr); [ -1, 1]) = max!t! ~ 1 Ig1rl(t)­
T,~_r(t)I, where T,~_r(t) is the polynomial of best approximation of degree
n - r to glr)(t).

Throughout this paper, the letters C 1 .... C6 , K 1, K], K 2 with subscript are
always the constants in the properties (1) - (IV). For the rest of the paper,
the letter C denotes a positive constant which may differ at each different
occurrence, even in the same chain of inequalities.

2

Let 'k"(X), k= 1, 2, ... be the fundamental polynomial of Lagrange
interpolation polynomial L,,(O, l;f, x), that is, 'kn(X) =hOkn(l; x). Then,

k= 1, 2, ..., n. (2.1 )
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We note that h'k"(V; x) is divided by l~,,(x) (= {lk,,(X)} V) and X=XkII
is a root with multiplicity r of h,k"(V; x). We define ei,(v; k, n),
i = r, r + I, ..., v - I to be the coefficients in the expression

v- I

h'k"( v; x) = I~Ix) L ei,( v; k, n)(x - Xk'Y'
;=r

k = I, 2, ... , 11. (2.2)

After this, if there is no possibility of misunderstanding, we write briefly

w(h) = w( [a, b ]; f; h).

We first prove the Proposition. By (2.1) and (2.2), we have

v - I 11

:= L I Rdi, r, n; x).
i=r k= I

Our task is to estimate L.Z~I Rdi,r,n;x). To do so, we shall divide the
sum into three parts. Here, we need a lemma on the behavior of p;, (x) in
a neighborhood of xl..

LEMMA 1 [5, Lemma I ]. There exist constants J> 0 and R > 0 such that

k<n, XkE[-Rq"_I,Rq,,_I] and x,,-Jq,,/n~x~x,,+Jq,,/n,then

n -1/2 _ I , I n - Ii? -IC-q" w(xd ~ Ip,,(x) ~ C- q,,-w(xd ,
q" q"

where C is independent of k, nand x.

By (I), we may suppose that the constant R satisfies x" < - Rq" and
Rq" < XI. Let K be a positive constant such that K < R, and let
x E [ -Kq", Kq,,]. We choose b so that 0 < b < min{ C j /2, J} where J and
C, are the constants in the lemma and in (I), (ii), respectively. Let

J= {k; IX-:\"kl < bqll/n} ,

J(j) = {k;j bq,,/n ~ Ix - xd < (j + I) bq,,/n, Ix,,1 ~ h·q,,} ,

j= 1, 2, ... ,

1= {k; bq,,/n ~ Ix -xkl, Kq}/ < Ixkl}.
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The sets J, J(j) and I may depend on x and n. The set J contains at most
one element and each of the sets J(j), j = I, 2, ... contains at most two
elements, and {1,2, ...,n}=U;~bJ(j)uJuI, where lin) is the smallest
number exceeding 2K J nlf5. Here, K 1 is the constant in (I), (i). Let

LI = I Rdi, r, n; x),
kEJ

L3 = L Rdi, r, n; X).
kEf

lIn)

L2 = L I: Rdi, r, n; X),
j ~ J k EJ(j)

i=r,r+I, ...,v-l,

Then, LZ~ I Rdi, r, n; x) = LI + L2 + L3' To estimate Lp , p = 1, 2, 3, we
need bounds of the coefficients eir(k) in (2.2). We shall get the bounds by
using the following estimate:

LEMMA 2 [5, Lemma 5]. Let v be a positive integer, and let s = 0, 1, ....
Then,

1{I~(x)} (S)IX=Xk I.:::; CM"(Xk)<s> q~,-<,>)(m-I), k = 1,2, ..., n.

where (.I') = I (.I': odd), (.I') = 0 (.I': even), and MIl(xk)= max{ Ixkl q,;'2,
IXklm-I}, and C is independent ofn and k.

LEMMA 3. For k = I, 2, ... , nand r = 0, 1, ... , v -1,

leir(v; k, n)':::; C (~" )r-i,

where C is independent of nand k.

Proof We prove this by induction on i. From h~~)(xd= I and (2.2), it
follows that err (k) = llr!. Thus, the case i = r holds. By (2.2) and the fact
h~~(xd =0, r+ I ~i~ v-I, we easily see

i- I 1
e;r(k) = - L -(.-- e<r(k)(I~jU-",1(x k ), r + 1 .:::; i ~ v-I,

.,=r l-S)!

Since M"(xd ~ Cq;-I by (I), (i), it follows from Lemma 2 that
1(1 ~)(S)(xk)1 ~ Cq~(m - I) ~ C(q"ln) -s for every .1', where C is independent of
nand k. This inequality and the assumption of induction lead to

i-I

leir(k)/ ~ C L le.,,(k)II(l~)(i-·,) (xkl!
s=r

where C is independent of nand k. Q.E.D.
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We continue the proof of Proposition. We first estimate 2:,. We may
assume J #- 0. Then, by (l), (i), J = {k(x)}, where k(x) is the number
satisfying xk(x/,,=x(x.,,)' The number k(x) may depend on n. Since
Ix - xk(x/I ~ 6q"fn, it follows from Lemma 3 and the mean value theorem
that LI = Rk1x)(i, r, n; x) ~ C Ip;,(~)fp:,(XkIX)W' (q,,/n)', where C is inde­
pendent of n and x, and ~ is between x and X k1x ). Since K < Rand
x E [ -Kq", Kq,,], it follows that Xkix) E [ -Kq" -I' Kq" _ I] for n ~ no, where
no is a number depending only on K, K and m. By Lemma 1, we have
Ip;,(~)fp~(Xklxl)1~ C for n ~no since I~ -Xklxd ~ Ix -Xkixll ~ <5qjn ~
Jq,,!n. Therefore, we have

(2.3 )

for x E [ - Kq", Kq,J and n ~ /1 0 ' where C is independent of /1 and x.
We next treat L2' Let 1 ~j~A.(/1) and kEJ(j). By Lemma 3, we have

Rk (i, r, n; x) ~ CF Ip,,(x )!{ (x - x k ) p;,(xk )} I' (q,,!/1)' with C independent
of n, x and j. We assume K < min {K I , K 2}' where K I and K 2 are the
constants in (I), (ii) and (II), respectively. By (I), (ii), we see that there
exists a number /1 1 such that if /1~/11' then 'x-x(\."d~C2q"fn for
x E [ -Kq", Kq,,], where n l depends only on K, K 1 and K 2 . Thus, by (II) we
have

XE[-Kq",Kq,,],/1~/1I' (2.4 )

Since there exists a number n2 depending only on K, Rand m such that
[-Kq",Kq"]c[-Kq,,._j,Rq,,_,] for /1~n2' it follows from Lemma 1
that I(X-Xk)P;,(xdl-'~Cj'lq~/2W(Xk)for kEJ(j) and /1~n2' Thus,
Rdi, r, n; x) ~ C{ w(xd!w(x)} VP-V(q,,!n)' ~ Cw(x) -"j -I. (q,,!n)' for XE

[-Kq,,,Kq,,] and n~max{/1I,/12}' Since every J(j) has at most two
elements, it follows that

(
q)r ;'(", (q ),.

L:2~C : W(X)-Vj~/-'~CW(X)-V ~' logn (2.5)

for XE[-Kq",Kq,,] and n~max{nl,n2}, where C is independent of n
and x.

Lastly, we estimate L3' Let kEf and XE [-Kq", Kq,,]. Since IX-Xkl ~
(K + Kd q" for every k, it follows from Lemma 3 that Rdi, r, n; x) ~
C Ip,,(x)!{ (x - Xk) P;,(Xk)} Iv (q,,!n)' - i q;, with C independent of x and n. By
(2.4) and Ix - xkl ~ Jq,,!n, we have R k (i, r, n; x) ~ Cw(x) -" /1" - r + iq ;,-3'/2

Ip~(xdl-V and thus,

2:3 ~ CW(X)-V nV-"+iq~-3vi2 L Ip;,(Xk)I-V
kEf
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for x E [ -Kq", Kqll]' where C is independent of nand x. The sum
LkEl/P;,(xk)1 -v is treated by the following lemma.

Let Ak,I' k = I, 2, ... be the Cotes numbers which appear in the Gauss­
Jacobi quadrature formula

f p(xkll ) Ak" = r= p(x) It,2(X) dx
k~I-X

valid for all polynomials p( x) of degree at most 2n - 1 (cf. [ 11 ] ),

LEMMA 4 [5, Lemma 7]. Let r > 0, Then,

I P;,(Xk)-2::; Cq,-;2m+>w2(rqll)'
k: 1-\"kJ ~ rq"

where C is independent of n.

By the lemma and viZ ~ I, we have

where C is independent of n and x, and fl = VKmm -I. Therefore, we have

(2.6)

for XE [-Kq", Kq,J, where C is independent of nand x. The proof of
Proposition is concluded by combining (2,3), (2.5) and (2.6),

We remark that by a more refined estimate on L2 we can get
LX= 1 \hrk,,(v; x)l::; C{xm-Iw(x)-V + log n}(qllln)' for XE [-Kq", Kq,,].
For the sake of brevity, we omit details.

The fundamental estimate (1.1) established now allows us to prove the
Theorem. Let N be a non-negative integer, and let). and fl be constants
such that 0 < A<fl. Let P*(x) be the polynomial of best approximation
of order n-I to fEC~'(R) on the interval [-flq",flq,,]. We put
g(t) =f(flq"t) and R*( t) = P*(flq"t). Then, we note that R*(t) is the poly­
nomial of best approximation of order n - I to g(t) on the interval
[ -1, 1]. Applying (IV), (i) and changing variable x = flq" t, we have
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jgl)( t) - R*Ij)( t)! = (j1q,Y 1/ (j)(X) - p*(j)(X)!

~ C6(n-I)-N {Ltn~l C-;J}-j
X (M,,)N E n _, ~ .,,{flN); [ -Mn' M"J)

~ C( n - I) - N {A" I G-;Jrj

( N ([ ]./IN). q,,)
X pq,,) W -j1qll' pq", '-;;

for j =0, I, ... , N, n - I > Nand Ixl ~ pq", where C is a constant depending
only on p and N. Here, we used Jackson's theorem (cf. [12, 5.1 ( I) J) and
the fact E,,_I_N(gi N); [-I, IJ)=(llq,.l'v·E,,_I_NUIN); [-pqll,pq,,])·
For Ixl ~ ),q,l' we have Lt

Il
_ 1 (X!(M,,)) ~ (n - I) -I {I- (i.!p)2} 1/2. Thus, if

0<).<j1, then for Ixl ~),q",

for j = 0, I, ..., Nand n - I > N, where C is a constant depending only on
N, J. and p.

Let t5(x) = 1xl + 1 for Ixl ~ 1 and t5(x) = Ixl + lxi' m for Ixl> l. The
function t5( x) has first been introduced by [I J for the case I1J = 2. Let x E R
be fixed. We apply (III) to the polynomial R(t)=L,,(t5(x)t)-p*(t5(x)t) of
degree at most vn - I. Then, we have IR1iI(t)1 ~ Cs A "" ~ I (1)-j

max )'1 ~ I IR(s) I for j = 0, I, ... and It I~ l. We use this inequality for t =

xlt5(x). Then, we easily see that for j = 0, I, ... ,

~ C s {t5(X) L1 v"_1 (~(_X_x·.))}-j max ILII(u)-P*(u)1
U .. lui ~r5lx)

~ CO + Ixl/lm - h /
2

) n/ max IL,,(u) - P*(u)l,
Inl"; .!'x)

(2.8 )

where C is a constant depending only on j and 1'. Let K be a constant such
that K 1 < K, and let c be a constant such that 0 < c < min {K

"
/(}, where
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K 1 and J{ are the constants in (I), (i) and Proposition, respectively. By (2.7)
and (2.8), we have, for Ixl ~ cq" and j = 0, I, ..., N,

~ C j (I + Ixl jlm -2,/2) n j max ILII(u) - P*(u)il lui ,;;,51')

( )

N-j )}q" . IN). qll+ -;,; w([ -Kqll' Kq"JJ '-;,; , (2.9)

where C is a constant independent of n, x and f
It is enough to estimate ILII(u) - P*(u)1 for lui ~ 6(x). Since the degree

of P*(u) does not exceed vn - I, it follows that L II (I' - I, 1'; P*, u) = P*(u),

which leads to

LII(u) - P*(u) = LII(u) -LII ( I' -1,1'; P*, u)

n I

= L: L: {jlr)(Xk) - p*lr)(xd} hrk(u)
k= 1 t·=O

1/ v-l

- I I p*lr)(xd hrk(u).
k=l r~I+1

(2.10)

We note that if I' - I = I, then the second sum vanishes, Let N be an integer
such that I~N. Since Ixkl ~Klqll for all k by (I), (i), it follows from (2.7)
that for k = I, 2, .." nand r =0, I, ..., I,

( )

IV-r ( )qll . . '1/11). qn
~ C -;,; w [-Kq,,, Kq"J,f '-;,;' (2.11 )

where C is a positive constant depending only on N, K I and K. If r > I, then
by (IV), Oi) and by changing variables,

(2.12)
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for k = I, 2, ... , n, where C is a positive constant depending only on r, K l

and K. Applying the estimates (2.11) and (2.12) to the expression (2.10), we
have

(v- I = I),

(v-I> I),

(2.13)

where C is a constant independent of n, x and f, and wj(q"jn) stands for
w([Kq", Kq,,]; pn; q"jn). Note that there exists a number no such that
if n ~no then £>(x) ~ Kq" for x with Ixl ~ cq". Then, by Proposition
and the inequality max lui ~J(xl e vum

/
2 ~ Ce vxm

/
2 with C independent of x, we

completes the proof of Theorem.
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