Convergence of the Derivatives of Hermite-Fejér
 Interpolation Polynomials of Higher Order
 Based at the Zeros of Freud Polynomials

Yuichi Kanjin

Department of Mathematics, College of Liberal Arts, Kanazawa University, Kanazawa 920-11, Japan AND

Ryozi Sakal

Anjyo-Higashi Senior High School, 10 Odozuka, Kitayamazaki-cho, Anjyo, Aichi 446, Japan

Communicated by Doron S. Lubinsky
Received April 20, 1993; accepted in revised form December 19, 1993

DEDICATED TO PROFESSOR SATORU IGARI ON HIS 60TH BIRTHDAY

Abstract

We shall prove pointwise convergence of the derivatives of Hermite-Fejer interpolation polynomials of higher order based at the zeros of orthonormal polynomials with respect to Freud weights $\exp \left(-x^{m}\right), m=2,4,6, \ldots$. 1995 Acadenic Press. Inc.

1

The purpose of this paper is to prove pointwise convergence of the derivatives of Hermite-Fejer interpolation polynomials of higher order based at the zeros of orthonormal polynomials with respect to a Freud weight of the form $\exp \left(-x^{m}\right)$ with an even positive integer m.

Let

$$
Q(x)=\frac{1}{2} x^{m}, \quad w(x)=\exp (-Q(x)),
$$

where $m=2,4,6, \ldots$. The orthonormal polynomials $p_{n}\left(w^{2} ; x\right)=p_{n}(x)=$ $\gamma_{n} x^{n}+\cdots$, where $\gamma_{n}>0$, are defined by the relation

$$
\int_{-\infty}^{\infty} p_{l}(x) p_{n}(x) w^{2}(x) d x=\delta_{l n} .
$$

378

These polynomials were investigated by Freud, e.g., $[2,3]$, and recently by many authors in connection with approximation theory. For detailed references and an extensive survey, readers may refer to Nevai [11].

We denote the zeros of $p_{n}(x)$ by $x_{k n}, k=1,2, \ldots, n$, where

$$
x_{1 n}>w_{2 n}>\cdots>x_{n n} .
$$

Let v be a positive integer, and let l be a non-negative integer such that $v-1 \geqslant l$. For $f \in C^{\prime}(\mathbf{R})$, the Hermite-Fejer interpolation polynomial $L_{n}(l, v ; f, x)$ of order (l, v) based at the zeros $x_{1 n}, \ldots, x_{n n}$ is defined to be the unique algebraic polynomial of degree at most $v n-1$ which satisfies

$$
\begin{aligned}
L_{n}\left(l, v ; f, x_{k n}\right) & =f\left(x_{k n}\right), \\
L_{n}^{\prime}\left(l, v ; f, x_{k n}\right) & =f^{\prime}\left(x_{k n}\right), \ldots, \\
L_{n}^{(l)}\left(l, v ; f, x_{k n}\right) & =f^{(l)}\left(x_{k n}\right), \\
L_{n}^{(l+1)}\left(l, v ; f, x_{k n}\right) & =0, \ldots, \\
L_{n}^{(v-1)}\left(l, v ; f, x_{k n}\right) & =0
\end{aligned}
$$

for $k=1,2, \ldots, n$. It is known that, for every $n=1,2, \ldots, k=1,2, \ldots, n$ and $r=0,1, \ldots, v-1$, there exists a unique polynomial $h_{r k n}(v ; x)$ of degree $v n-1$ satisfying

$$
h_{r k n}^{(j)}\left(v ; x_{p n}\right)=\delta_{r j} \delta_{k p}, \quad p=1,2, \ldots, n, \quad j=0,1, \ldots, v-1
$$

(cf. [8, Chap. I, Sect. 4]). The interpolation polynomial $L_{n}(l, v ; f, x)$ is written in the form

$$
L_{n}(l, v ; f, x)=\sum_{k=1}^{n} \sum_{r=0}^{l} f^{(r)}\left(x_{k n}\right) h_{r k n}(v ; x)
$$

Since $L_{n}(l, v ; f, x)=1$ for $f(x)=1$, we see that

$$
\sum_{k=1}^{n} h_{0 k n}(v ; x)=1
$$

We note that $L_{n}(0,1 ; f, x)$ is the Lagrange interpolation polynomial based at the points $x_{1 n}, \ldots, x_{n n}$. We define the modulus of continuity of $f \in C(\mathbf{R})$ on an interval $[a, b]$ by $\omega([a, b] ; f ; h)=\sup \{|f(x)-f(y)| ;|x-y| \leqslant h$, $x, y \in[a, b]\}, h>0$.

Freud [4] and Nevai [9,10] considered pointwise convergence of the Lagrange interpolation polynomials $L_{n}(0,1 ; f, x)$ for the Hermite weight $\exp \left(-x^{2}\right)$, i.e., $m=2$. Knopfmacher [6] estimated the rate of approximation of pointwise convergence of the polynomials $L_{n}(0,1 ; f, x)$ for the class of
regular Freud weights which includes the weights $\exp \left(-x^{m \prime}\right), m=2,4,6, \ldots$. Recently, the authors [5] observed the behavior of pointwise convergence of Hermite-Fejér interpolation polynomials $L_{n}(0, v ; f, x)$ of order $(0, v)$ for the weights $\exp \left(-x^{m}\right), m=2,4,6, \ldots$, and showed that if v is even then for every continuous function $f(x)$, the sequence $\left\{L_{n}(0, v, f, x)\right\}$ converges uniformly to $f(x)$ on any compact interval, and showed that if v is odd then for every interval I, there exists a continuous function $f(x)$ such that $\lim \sup _{n \rightarrow \infty} \max _{x \in I}$ $\left|L_{n}(0, v ; f, x)\right|=\infty$. On the other hand, Balázs [1] treated convergence problems of the derivatives $L_{n}^{(j)}(0,1 ; f, x)$ of Lagrange interpolation polynomials for $m=2$, and proved that $\left|f^{(j)}(x)-L_{n}^{(j)}(0,1 ; f, x)\right| \leqslant$ $C \omega\left(\mathbf{R} ; f^{(r)} ; n^{-1 / 2}\right) n^{-r / 2+j}\left\{\log n+\exp \left(x^{2} / 2\right)\right\}$ for $|x| \leqslant x_{1 n}, j=0, \ldots, r$. In this paper, we shall consider convergence problems of the derivatives $L_{n}^{(j)}(l, v ; f, x)$ for arbitrary $v=1,2, \ldots, 0 \leqslant l \leqslant v-1$ and $m=2,4,6, \ldots$.

Let q_{n} denote the unique positive solution of the equation $q_{n} Q^{\prime}\left(q_{n}\right)=n$, that is,

$$
q_{n}=\left(\frac{2 n}{m}\right)^{1 / m \prime}
$$

Our theorem is as follows:
Theorem. Let v be a positive integer and let l be an integer such that $v-1 \geqslant l \geqslant 0$. Then, there exist positive constants c and K satisfying the following:
(i) The case $v-1=1$: Let N be an integer such that $N \geqslant 1$, and $f \in C^{N}(\mathbf{R})$. Then, for $|x| \leqslant c q_{n}$,

$$
\begin{aligned}
\left|L_{n}^{(j)}(v-1, v ; f, x)-f^{(j)}(x)\right| \leqslant & C\left(1+|x|^{j(m-2) / 2}\right) e^{v x^{m} / 2} \\
& \times \omega\left(\left[-K q_{n}, K q_{n}\right] ; f^{(N)} ; \frac{q_{n}}{n}\right) \\
& \times\left(\frac{q_{n}}{n}\right)^{N} n^{j} \log n \\
& j=0,1, \ldots, N \quad n=N+1, N+2, \ldots
\end{aligned}
$$

(ii) The case $v-1>l$: Let $f \in C^{\prime}(\mathbf{R})$. Then, for $|x| \leqslant c q_{n}$,

$$
\begin{aligned}
\left|L_{n}^{(j)}(l, v ; f, x)-f^{(j)}(x)\right| \leqslant & C\left(1+|x|^{j(m-2) / 2}\right) e^{v x^{m} / 2} \\
& \times \omega\left(\left[-K q_{n}, K q_{n}\right] ; f^{(l)} ; \frac{q_{n}}{n}\right) \\
& \times\left(\frac{q_{n}}{n}\right)^{\prime} n^{j} \log n \\
& j=0,1, \ldots, l, \quad n=l+1, l+2, \ldots
\end{aligned}
$$

Here, C is a positive constant independent of n, x and f.

Corollary. (i) The case $v-1=1$: Let $N \geqslant 1$. If $\lim _{h \rightarrow 0} \omega\left(\mathbf{R} ; f^{(N)} ; h\right)$ $\log h=0$, then for every $M>0$,

$$
\lim _{n \rightarrow \infty} \max _{|x| \leqslant M}\left|L_{n}^{(j)}(v-1, v ; f, x)-f^{(j)}(x)\right|=0
$$

for $j=0,1, \ldots,[(1-1 / m) N]($ the integral part of $(1-1 / m) N)$.
(ii) The case $v-1>l$: If $\lim _{h \rightarrow 0} \omega\left(\mathbf{R} ; f^{(\prime)} ; h\right) \log h=0$, then for every $M>0$,

$$
\lim _{n \rightarrow \infty} \max _{|x| \leqslant M}\left|L_{n}^{(j)}(l, v ; f, x)-f^{(j)}(x)\right|=0
$$

for $j=0,1, \ldots,[(1-1 / m) 1]$.
We remark that the condition $\lim _{h \rightarrow 0} \omega\left(\mathbf{R} ; f^{(N)} ; h\right) \log h=0$ holds, e.g., if $f^{(N)} \in \operatorname{Lip} \alpha, 0<\alpha \leqslant 1$. We mention that Balázs [1] has obtained the estimate mentioned above for $v=1$ and $m=2$.

For the proof of Theorem, we need a basic estimate given in the following:

Proposition. Let $r=0,1, \ldots, v-1$. There exists a positive constant κ such that

$$
\begin{equation*}
\sum_{k=1}^{n}\left|h_{r k n}(v ; x)\right| \leqslant C e^{v x^{n / 2}}\left(\frac{q_{n}}{n}\right)^{r} \log n \tag{1.1}
\end{equation*}
$$

for $x \in\left[-\kappa q_{n}, \kappa q_{n}\right]$ and $n=1,2, \ldots$, where C is a constant independent of x and n.

We remark that for $m=2$ and $v=1$ (and thus $r=0$), Freud [4, Theorem 1] has gotten the estimate $\sum_{k=1}^{n}\left|h_{0 k n}(1 ; x)\right| \leqslant C\{\log n+$ $\left.\exp \left(x^{2} / 2\right)\right\}$.

The proofs of Theorem and Proposition will be given in the next section. We summarize here some known results which are needed in the proofs.
(I) [6, Lemma 4.11]: (i) There exists a constant $K_{3}>0$ independent of n such that $x_{1 n} \leqslant K_{1} q_{n}, n=1,2, \ldots$
(ii) There exist constants $C_{1}, C_{2}, \kappa_{1}>0$ independent of n and k such that $C_{1} q_{n} / n<x_{k-1 n}-x_{k n}<C_{2} q_{n} / n$ for $x_{k-1 n}, x_{k n} \in\left[-\kappa_{1} q_{n}, k_{1} q_{n}\right]$.

Let $x_{(x, n)}$ denote the closest zero of $p_{n}(x)$ to x. If x is the midpoint of two zeros, then we define $x_{(x, n)}$ to be the closest zero of $p_{n}(x)$ on the left.
(II) [6, Theorem 3.7]: There exist constants $C_{3}, C_{4}, \kappa_{2}>0$ independent of n and x such that

$$
\begin{gathered}
C_{3}\left|x-x_{(x, n)}\right| \frac{n}{q_{n}} q_{n}^{-1 / 2} \leqslant\left|p_{n}(x)\right| w(x) \leqslant C_{4}\left|x-x_{(x, n)}\right| \frac{n}{q_{n}} q_{n}^{-1 / 2}, \\
n=1,2, \ldots \text { for } x \text { with }|x| \leqslant \kappa_{2} q_{n}
\end{gathered}
$$

(III) Bernstein's inequality $[12,4.8(51)]$: Let $\Delta_{n}(t)=n^{-1}\left(1-t^{2}\right)^{1 / 2}$ $+n^{-2}$. Let $R_{n}(t)$ be a polynomial of degree n. Then, for $-1 \leqslant t \leqslant 1$ and $j=0,1, \ldots$,

$$
\left|R_{n}^{(j)}(t)\right| \leqslant C_{5} \Delta_{n}(t)^{-j} \max _{|s| \leqslant 1}\left|R_{n}(s)\right|, \quad n=1,2, \ldots,
$$

where C_{5} is a positive constant depending only on j.
(IV) [7, Corollary 1, Theorem 3]: Let $r=0,1, \ldots$, and $g(t) \in C^{r}(\mathbf{R})$. Let $R_{n}^{*}(t)$ be the polynomial of best approximation of order n to $g(t)$ on the interval $[-1,1]$. Then, for $|t| \leqslant 1$,
(i) $\quad\left|g^{(j)}(t)-R_{n}^{*(j)}(t)\right| \leqslant C_{6} n^{-r} \Delta_{n}(t)^{-j} E_{n-r}\left(g^{(r)} ;[-1,1]\right)$, $j=0,1, \ldots, r, n=r+1, r+2$.
(ii)

$$
\begin{gathered}
\left|R_{n}^{*(j)}(t)\right| \leqslant C_{7} n^{-r} A_{n}(t)^{-j} \omega\left([-1,1] ; g^{(r)} ; \frac{1}{n}\right) \\
j=r+1, r+2, \ldots, n=1,2, \ldots
\end{gathered}
$$

where C_{6} is a positive constant depending only on r and C_{7} is a positive constant depending only on j, and $E_{n-r}\left(g^{(r)} ;[-1,1]\right)=\max _{|r| \leqslant 1} \mid g^{(r)}(t)-$ $T_{n-r}^{*}(t) \mid$, where $T_{n-r}^{*}(t)$ is the polynomial of best approximation of degree $n-r$ to $g^{(r)}(t)$.

Throughout this paper, the letters $C_{1} \sim C_{6}, K_{1}, \kappa_{1}, \kappa_{2}$ with subscript are always the constants in the properties (I) \sim (IV). For the rest of the paper, the letter C denotes a positive constant which may differ at each different occurrence, even in the same chain of inequalities.

Let $l_{k n}(x), k=1,2, \ldots$ be the fundamental polynomial of Lagrange interpolation polynomial $L_{n}(0,1 ; f, x)$, that is, $l_{k n}(x)=h_{0 k n}(1 ; x)$. Then,

$$
\begin{equation*}
l_{k n}(x)=\frac{p_{n}(x)}{\left(x-x_{k n}\right) p_{n}^{\prime}\left(x_{k n}\right)}, \quad k=1,2, \ldots, n \tag{2.1}
\end{equation*}
$$

We note that $h_{r k n}(v ; x)$ is divided by $l_{k n}^{v}(x)\left(=\left\{l_{k n}(x)\right\}^{v}\right)$ and $x=x_{k n}$ is a root with multiplicity r of $h_{r k n}(v ; x)$. We define $e_{i r}(v ; k, n)$, $i=r, r+1, \ldots, v-1$ to be the coefficients in the expression

$$
\begin{gather*}
h_{r k n}(v ; x)=l_{k n}^{v}(x) \sum_{i=r}^{v-1} e_{i r}(v, k, n)\left(x-x_{k n}\right)^{j}, \\
k=1,2, \ldots, n . \tag{2.2}
\end{gather*}
$$

After this, if there is no possibility of misunderstanding, we write briefly

$$
\begin{array}{rlrl}
x_{k} & =x_{k n} ; & L_{n}(x)=L_{n}(l, v ; f, x) ; & \\
h_{r k}(x)=h_{r k n}(v ; x) ; \\
l_{k}(x)=l_{k n}(x) ; & e_{i r}(k)=e_{i r}(v ; k, n) ; & & \omega(h)=\omega([a, b] ; f ; h) .
\end{array}
$$

We first prove the Proposition. By (2.1) and (2.2), we have

$$
\begin{aligned}
\sum_{k=1}^{n}\left|h_{r k}(x)\right| & \leqslant \sum_{i=r}^{v-1} \sum_{k=1}^{n}\left|\frac{p_{n}(x)}{\left(x-x_{k}\right) p_{n}^{\prime}\left(x_{k}\right)}\right|^{v}\left|e_{i r}(k)\right|\left|x-x_{k}\right|^{i} \\
& :=\sum_{i=r}^{v-1} \sum_{k=1}^{n} R_{k}(i, r, n ; x) .
\end{aligned}
$$

Our task is to estimate $\sum_{k=1}^{n} R_{k}(i, r, n ; x)$. To do so, we shall divide the sum into three parts. Here, we need a lemma on the behavior of $p_{n}^{\prime}(x)$ in a neighborhood of x_{k}.

Lemma 1 [5, Lemma 1]. There exist constants $\tilde{\delta}>0$ and $\tilde{\kappa}>0$ such that $k<n, x_{k} \in\left[-\tilde{\kappa} q_{n-1}, \tilde{\kappa} q_{n-1}\right]$ and $x_{k}-\tilde{\delta} q_{n} / n \leqslant x \leqslant x_{k}+\tilde{\delta} q_{n} / n$, then

$$
C \frac{n}{q_{n}} q_{n}^{-1 / 2} w\left(x_{k}\right)^{-1} \leqslant\left|p_{n}^{\prime}(x)\right| \leqslant C \frac{n}{q_{n}} q_{n}^{-1 / 2} w\left(x_{k}\right)^{-1},
$$

where C is independent of k, n and x.
By (I), we may suppose that the constant $\tilde{\kappa}$ satisfies $x_{n}<-\tilde{\kappa} q_{n}$ and $\tilde{\kappa} q_{n}<x_{1}$. Let κ be a positive constant such that $\kappa<\tilde{\kappa}$, and let $x \in\left[-\kappa q_{n}, \kappa q_{n}\right]$. We choose δ so that $0<\delta<\min \left\{C_{1} / 2, \tilde{\delta}\right\}$ where $\tilde{\delta}$ and C_{1} are the constants in the lemma and in (I), (ii), respectively. Let

$$
\begin{aligned}
J= & \left\{k ;\left|x-x_{k}\right|<\delta q_{n} / n\right\}, \\
J(j)= & \left\{k ; j \delta q_{n} / n \leqslant\left|x-x_{k}\right|<(j+1) \delta q_{n} / n,\left|x_{k}\right| \leqslant \kappa q_{n}\right\}, \\
& j=1,2, \ldots, \\
I= & \left\{k ; \delta q_{n} / n \leqslant\left|x-x_{k}\right|, \kappa q_{n}<\left|x_{k}\right|\right\} .
\end{aligned}
$$

The sets $J, J(j)$ and I may depend on x and n. The set J contains at most one element and each of the sets $J(j), j=1,2, \ldots$ contains at most two elements, and $\{1,2, \ldots, n\}=\bigcup_{j=0}^{\lambda(n)} J(j) \cup J \cup I$, where $\lambda(n)$ is the smallest number exceeding $2 K_{1} n / \delta$. Here, K_{1} is the constant in (1), (i). Let

$$
\begin{aligned}
& \sum_{1}=\sum_{k \in J} R_{k}(i, r, n ; x), \quad \sum_{2}=\sum_{j=1}^{\lambda(n)} \sum_{k \in J(j)} R_{k}(i, r, n ; x) \\
& \sum_{3}=\sum_{k \in I} R_{k}(i, r, n ; x)
\end{aligned}
$$

Then, $\sum_{k=1}^{n} R_{k}(i, r, n ; x)=\sum_{1}+\sum_{2}+\sum_{3}$. To estimate $\sum_{p}, p=1,2,3$, we need bounds of the coefficients $e_{i r}(k)$ in (2.2). We shall get the bounds by using the following estimate:

Lemma 2 [5, Lemma 5]. Let v be a positive integer, and let $s=0,1, \ldots$. Then,

$$
\left|\left\{l_{k}^{v}(x)\right\}^{(s)}\right|_{x=x_{k}} \mid \leqslant C M_{n}\left(x_{k}\right)^{\langle s\rangle} q_{n}^{(s-\langle s\rangle)(m-1)}, \quad k=1,2, \ldots, n .
$$

where $\langle s\rangle=1$ (s : odd), $\langle s\rangle=0$ (s : even), and $M_{n}\left(x_{k}\right)=\max \left\{\left|x_{k}\right| q_{n}^{-2}\right.$, $\left.\left|x_{k}\right|^{m-1}\right\}$, and C is independent of n and k.

Lemma 3. For $k=1,2, \ldots, n$ and $r=0,1, \ldots, v-1$,

$$
\left\lvert\, e_{i r}(v ; k, n) \leqslant C\left(\frac{q_{n}}{n}\right)^{r-i}\right., \quad i=r, r+1, \ldots, v-1,
$$

where C is independent of n and k.
Proof. We prove this by induction on i. From $h_{r k}^{(r)}\left(x_{k}\right)=1$ and (2.2), it follows that $e_{r r}(k)=1 / r$!. Thus, the case $i=r$ holds. By (2.2) and the fact $h_{r k}^{(i)}\left(x_{k}\right)=0, r+1 \leqslant i \leqslant v-1$, we easily see

$$
e_{i r}(k)=-\sum_{s=r}^{i-1} \frac{1}{(i-s)!} e_{s r}(k)\left(l_{k}^{v}\right)^{(i-s)}\left(x_{k}\right), r+1 \leqslant i \leqslant v-1
$$

Since $M_{n}\left(x_{k}\right) \leqslant C q_{n}^{m-1}$ by (I), (i), it follows from Lemma 2 that $\left|\left(l_{k}^{v}\right)^{(s)}\left(x_{k}\right)\right| \leqslant C q_{n}^{s(m-1)} \leqslant C\left(q_{n} / n\right)^{-s}$ for every s, where C is independent of n and k. This inequality and the assumption of induction lead to

$$
\begin{aligned}
\left|e_{i r}(k)\right| & \leqslant C \sum_{s=r}^{i-1}\left|e_{\mathrm{sr}}(k)\right|\left|\left(l_{k}^{v}\right)^{(i-s)}\left(x_{k}\right)\right| \\
& \leqslant C \sum_{s=r}^{i-1}\left(\frac{q_{n}}{n}\right)^{r-s}\left(\frac{q_{n}}{n}\right)^{-(i-s)} \leqslant C\left(\frac{q_{n}}{n}\right)^{r-i}
\end{aligned}
$$

where C is independent of n and k.
Q.E.D.

We continue the proof of Proposition. We first estimate Σ_{1}. We may assume $J \neq \varnothing$. Then, by (I), (i), $J=\{k(x)\}$, where $k(x)$ is the number satisfying $x_{k(x) n}=x_{(x, n)}$. The number $k(x)$ may depend on n. Since $\left|x-x_{k(x)}\right| \leqslant \delta q_{n} / n$, it follows from Lemma 3 and the mean value theorem that $\sum_{1}=R_{k(x)}(i, r, n ; x) \leqslant C\left|p_{n}^{\prime}(\xi) / p_{n}^{\prime}\left(x_{k(x)}\right)\right|^{v} \cdot\left(q_{n} / n\right)^{r}$, where C is independent of n and x, and ξ is between x and $x_{k(x)}$. Since $\kappa<\hat{\kappa}$ and $x \in\left[-\kappa q_{n}, \kappa q_{n}\right]$, it follows that $x_{k(x)} \in\left[-\tilde{\kappa} q_{n-1}, \tilde{k} q_{n-1}\right]$ for $n \geqslant n_{0}$, where n_{0} is a number depending only on $\kappa, \ddot{\kappa}$ and m. By Lemma 1 , we have $\left|p_{n}^{\prime}(\xi) / p_{n}^{\prime}\left(x_{k(x)}\right)\right| \leqslant C$ for $n \geqslant n_{0}$ since $\left|\xi-x_{k(x)}\right| \leqslant\left|x-x_{k(x)}\right| \leqslant \delta q_{n} / n \leqslant$ $\delta \tilde{\delta}_{n} / n$. Therefore, we have

$$
\begin{equation*}
\Sigma_{1} \leqslant C\left(q_{n} / n\right)^{r} \tag{2.3}
\end{equation*}
$$

for $x \in\left[-\kappa q_{n}, \kappa q_{n}\right]$ and $n \geqslant n_{0}$, where C is independent of n and x.
We next treat Σ_{2}. Let $1 \leqslant j \leqslant \lambda(n)$ and $k \in J(j)$. By Lemma 3, we have $R_{k}(i, r, n ; x) \leqslant C j^{i}\left|p_{n}(x) /\left\{\left(x-x_{k}\right) p_{n}^{\prime}\left(x_{k}\right)\right\}\right|^{\nu}\left(q_{n} / n\right)^{r}$ with C independent of n, x and j. We assume $\kappa<\min \left\{\kappa_{1}, \kappa_{2}\right\}$, where κ_{1} and κ_{2} are the constants in (I), (ii) and (II), respectively. By (I), (ii), we see that there exists a number n_{1} such that if $n \geqslant n_{1}$, then $\left|x-x_{(x, n)}\right| \leqslant C_{2} q_{n} / n$ for $x \in\left[-\kappa q_{n}, \kappa q_{n}\right]$, where n_{1} depends only on κ, κ_{1} and κ_{2}. Thus, by (II) we have

$$
\begin{equation*}
\left|p_{n}(x)\right| \leqslant C w(x)^{-1} q_{n}^{-1 / 2}, \quad x \in\left[-\kappa q_{n}, \kappa q_{n}\right], n \geqslant n_{1} . \tag{2.4}
\end{equation*}
$$

Since there exists a number n_{2} depending only on $\kappa, \tilde{\kappa}$ and m such that $\left[-\kappa q_{n}, \kappa q_{n}\right] \subset\left[-\tilde{\kappa} q_{n-1}, \tilde{\kappa} q_{n-1}\right]$ for $n \geqslant n_{2}$, it follows from Lemma 1 that $\left|\left(x-x_{k}\right) p_{n}^{\prime}\left(x_{k}\right)\right|^{-1} \leqslant C j^{-1} q_{n}^{1 / 2} w\left(x_{k}\right)$ for $k \in J(j)$ and $n \geqslant n_{2}$. Thus, $R_{k}(i, r, n ; x) \leqslant C\left\{w\left(x_{k}\right) / w(x)\right\}^{v} j^{i-v}\left(q_{n} / n\right)^{r} \leqslant C w(x)^{-v} j^{-1} \cdot\left(q_{n} / n\right)^{r}$ for $x \in$ $\left[-\kappa q_{n}, \kappa q_{n}\right]$ and $n \geqslant \max \left\{n_{1}, n_{2}\right\}$. Since every $J(j)$ has at most two elements, it follows that

$$
\begin{equation*}
\Sigma_{2} \leqslant C\left(\frac{q_{n}}{n}\right)^{r} w(x)^{-v} \sum_{j=1}^{\lambda(n)} j^{-1} \leqslant C w(x)^{-v}\left(\frac{q_{n}}{n}\right)^{r} \log n \tag{2.5}
\end{equation*}
$$

for $x \in\left[-\kappa q_{n}, \kappa q_{n}\right]$ and $n \geqslant \max \left\{n_{1}, n_{2}\right\}$, where C is independent of n and x.

Lastly, we estimate \sum_{3}. Let $k \in I$ and $x \in\left[-\kappa q_{n}, \kappa q_{n}\right]$. Since $\left|x-x_{k}\right| \leqslant$ $\left(\kappa+K_{l}\right) q_{n}$ for every k, it follows from Lemma 3 that $R_{k}(i, r, n ; x) \leqslant$ $C\left|p_{n}(x) /\left\{\left(x-x_{k}\right) p_{n}^{\prime}\left(x_{k}\right)\right\}\right|^{v}\left(q_{n} / n\right)^{r-i} q_{n}^{i}$ with C independent of x and n. By (2.4) and $\left|x-x_{k}\right| \geqslant \delta q_{n} / n$, we have $R_{k}(i, r, n ; x) \leqslant C w(x)^{-v} n^{v-r+i} q_{n}^{r-3 v / 2}$ $\left|p_{n}^{\prime}\left(x_{k}\right)\right|^{-v}$ and thus,

$$
\Sigma_{3} \leqslant C w(x)^{-v} n^{v-r+i} q_{n}^{r-3 v / 2} \sum_{k \in I}\left|p_{n}^{\prime}\left(x_{k}\right)\right|^{-v}
$$

for $x \in\left[-\kappa q_{n}, \kappa q_{n}\right]$, where C is independent of n and x. The sum $\sum_{k \in I}\left|p_{n}^{\prime}\left(x_{k}\right)\right|^{-v}$ is treated by the following lemma.

Let $\lambda_{k n}, k=1,2, \ldots$ be the Cotes numbers which appear in the GaussJacobi quadrature formula

$$
\sum_{k=1}^{n} p\left(x_{k u}\right) \lambda_{k n}=\int_{-x}^{\infty} p(x) w^{2}(x) d x
$$

valid for all polynomials $p(x)$ of degree at most $2 n-1$ (cf. [11]).
Lemma 4 [5, Lemma 7]. Let $\tau>0$. Then,

$$
\sum_{k:\left|x_{k}\right| \geqslant r q_{n}} p_{n}^{\prime}\left(x_{k}\right)^{-2} \leqslant C q_{n}^{-2 m+3} w^{2}\left(\tau q_{n}\right),
$$

where C is independent of n.
By the lemma and $v / 2 \geqslant 1$, we have

$$
\begin{aligned}
\sum_{k \in I}\left|p_{n}^{\prime}\left(x_{k}\right)\right|^{-v} & \leqslant\left\{\sum_{k \in I}\left|p_{n}^{\prime}\left(x_{k}\right)\right|^{-2}\right\}^{v / 2} n^{1 / 2} \\
& \leqslant C\left\{q_{n}^{-2 m+3} w^{2}\left(\kappa q_{n}\right)\right\}^{v / 2} n^{1 / 2}=C q_{n}^{(-2 m+3) v / 2} e^{-\mu \prime \prime} n^{1 / 2}
\end{aligned}
$$

where C is independent of n and x, and $\mu=v \kappa^{m} m^{-1}$. Therefore, we have

$$
\begin{equation*}
\Sigma_{3} \leqslant C w(x)^{-v}\left(\frac{q_{n}}{n}\right)^{r} e^{-\mu n^{i+1 / 2}} \tag{2.6}
\end{equation*}
$$

for $x \in\left[-\kappa q_{n}, \kappa q_{n}\right]$, where C is independent of n and x. The proof of Proposition is concluded by combining (2.3), (2.5) and (2.6).
We remark that by a more refined estimate on Σ_{2} we can get $\sum_{k=1}^{n}\left|h_{r k n}(v, x)\right| \leqslant C\left\{x^{m-1} w(x)^{-v}+\log n\right\}\left(q_{n} / n\right)^{r} \quad$ for $\quad x \in\left[-\kappa q_{n}, \kappa q_{n}\right]$. For the sake of brevity, we omit details.

The fundamental estimate (1.1) established now allows us to prove the Theorem. Let N be a non-negative integer, and let λ and μ be constants such that $0<\lambda<\mu$. Let $P^{*}(x)$ be the polynomial of best approximation of order $n-1$ to $f \in C^{N}(\mathbf{R})$ on the interval $\left[-\mu q_{n}, \mu q_{n}\right]$. We put $g(t)=f\left(\mu q_{n} t\right)$ and $R^{*}(t)=P^{*}\left(\mu q_{n} t\right)$. Then, we note that $R^{*}(t)$ is the polynomial of best approximation of order $n-1$ to $g(t)$ on the interval $[-1,1]$. Applying (IV), (i) and changing variable $x=\mu q_{n} t$, we have

$$
\begin{aligned}
\left|g^{(j)}(t)-R^{*(j)}(t)\right|= & \left(\mu q_{n}\right)^{j}\left|f^{(j)}(x)-P^{*(j)}(x)\right| \\
\leqslant & C_{6}(n-1)^{-N}\left\{\Delta_{n-1}\left(\frac{x}{\mu q_{n}}\right)\right\}^{-j} \\
& \times\left(\mu q_{n}\right)^{N} E_{n-1-N}\left(f^{(N)} ;\left[-\mu q_{n}, \mu q_{n}\right]\right) \\
\leqslant & C(n-1)^{-N}\left\{\Delta_{n-1}\left(\frac{x}{\mu q_{n}}\right)\right\}^{-j} \\
& \times\left(\mu q_{n}\right)^{N} \omega\left(\left[-\mu q_{n}, \mu q_{n}\right] ; f^{(N)} ; \frac{q_{n}}{n}\right)
\end{aligned}
$$

for $j=0,1, \ldots, N, n-1>N$ and $|x| \leqslant \mu q_{n}$, where C is a constant depending only on μ and N. Here, we used Jackson's theorem (cf. [12, 5.1(1)]) and the fact $E_{n-1-N}\left(g^{(N)} ;[-1,1]\right)=\left(\mu q_{n}\right)^{N} \cdot E_{n-1-N}\left(f^{(N)} ;\left[-\mu q_{n}, \mu q_{n}\right]\right)$. For $|x| \leqslant \lambda q_{n}$, we have $\Delta_{n-1}\left(x /\left(\mu q_{n}\right)\right) \geqslant(n-1)^{-1}\left\{1-(\lambda / \mu)^{2}\right\}^{1 / 2}$. Thus, if $0<\lambda<\mu$, then for $|x| \leqslant \lambda q_{n}$,

$$
\begin{equation*}
\left|f^{(j)}(x)-P^{*(j)}(x)\right| \leqslant C\left(\frac{q_{n}}{n}\right)^{N-i} \omega\left(\left[-\mu q_{n}, \mu q_{n}\right] ; f^{(N)} ; \frac{q_{n}}{n}\right) \tag{2.7}
\end{equation*}
$$

for $j=0,1, \ldots, N$ and $n-1>N$, where C is a constant depending only on N, λ and μ.

Let $\delta(x)=|x|+1$ for $|x| \leqslant 1$ and $\delta(x)=|x|+|x|^{1-m}$ for $|x|>1$. The function $\delta(x)$ has first been introduced by [1] for the case $m=2$. Let $x \in \mathbf{R}$ be fixed. We apply (III) to the polynomial $R(t)=L_{n}(\delta(x) t)-P^{*}(\delta(x) t)$ of degree at most $v n-1$. Then, we have $\left|R^{(j)}(t)\right| \leqslant C_{5} \Delta_{v-1}(t)^{-j}$ $\max _{|s| \leqslant 1}|R(s)|$ for $j=0,1, \ldots$ and $|t| \leqslant 1$. We use this inequality for $t=$ $x / \delta(x)$. Then, we easily see that for $j=0,1, \ldots$,

$$
\begin{align*}
& \left|L_{n}^{(j)}(x)-P^{*(j)}(x)\right| \\
& \quad \leqslant C_{5}\left\{\delta(x) \Delta_{w n-1}\left(\frac{x}{\delta(x)}\right)\right\}^{-j} \max _{|u| \leqslant \delta(x)}\left|L_{n}(u)-P^{*}(u)\right| \\
& \quad \leqslant C \frac{n^{j}}{\left(\delta(x)^{2}-x^{2}\right)^{/ 2}} \max _{|u| \leqslant \delta(x)}\left|L_{n}(u)-P^{*}(u)\right| \\
& \quad \leqslant C\left(1+|x|^{\mu m-2) / 2}\right) n^{j} \max _{|u| \leqslant \delta(x)}\left|L_{n}(u)-P^{*}(u)\right|, \tag{2.8}
\end{align*}
$$

where C is a constant depending only on j and v. Let K be a constant such that $K_{1}<K$, and let c be a constant such that $0<c<\min \left\{K_{1}, \kappa\right\}$, where
K_{1} and κ are the constants in (I), (i) and Proposition, respectively. By (2.7) and (2.8), we have, for $|x| \leqslant c q_{n}$ and $j=0,1, \ldots, N$,

$$
\begin{align*}
& \left|L_{n}^{(j)}(x)-f^{(j)}(x)\right| \\
& \quad \leqslant\left|L_{n}^{(j)}(x)-P^{*(j)}(x)\right|+\left|P^{*(j)}(x)-f^{(j)}(x)\right| \\
& \quad \leqslant C\left\{\left(1+|x|^{j(m-2) / 2}\right) n^{j} \max _{|u| \leqslant \delta(x)}\left|L_{n}(u)-P^{*}(u)\right|\right. \\
& \left.\quad+\left(\frac{q_{n}}{n}\right)^{N-j} \omega\left(\left[-K q_{n}, K q_{n}\right] ; f^{(N)} ; \frac{q_{n}}{n}\right)\right\} \tag{2.9}
\end{align*}
$$

where C is a constant independent of n, x and f.
It is enough to estimate $\left|L_{n}(u)-P^{*}(u)\right|$ for $|u| \leqslant \delta(x)$. Since the degree of $P^{*}(u)$ does not exceed $v n-1$, it follows that $L_{n}\left(v-1, v ; P^{*}, u\right)=P^{*}(u)$, which leads to

$$
\begin{align*}
L_{n}(u)-P^{*}(u)= & L_{n}(u)-L_{n}\left(v-1, v ; P^{*}, u\right) \\
= & \sum_{k=1}^{n} \sum_{r=0}^{1}\left\{f^{(r)}\left(x_{k}\right)-P^{*(r)}\left(x_{k}\right)\right\} h_{r k}(u) \\
& -\sum_{k=1}^{n} \sum_{r=1+1}^{v-1} P^{*(r)}\left(x_{k}\right) h_{r k}(u) . \tag{2.10}
\end{align*}
$$

We note that if $v-1=l$, then the second sum vanishes. Let N be an integer such that $l \leqslant N$. Since $\left|x_{k}\right| \leqslant K_{1} q_{n}$ for all k by (I), (i), it follows from (2.7) that for $k=1,2, \ldots, n$ and $r=0,1, \ldots, l$,

$$
\begin{align*}
& \left|f^{(r)}\left(x_{k}\right)-P^{*(r)}\left(x_{k}\right)\right| \\
& \quad \leqslant C\left(\frac{q_{n}}{n}\right)^{N-r} \omega\left(\left[-K q_{n}, K q_{n}\right] ; f^{(N)} ; \frac{q_{n}}{n}\right) \tag{2.11}
\end{align*}
$$

where C is a positive constant depending only on N, K_{1} and K. If $r>l$, then by (IV), (ii) and by changing variables,

$$
\begin{equation*}
\left|P^{*(r)}\left(x_{k}\right)\right| \leqslant C\left(\frac{q_{n}}{n}\right)^{1-r} \omega\left(\left[-K q_{n}, K q_{n}\right] ; f^{(1)} ; \frac{q_{n}}{n}\right) \tag{2.12}
\end{equation*}
$$

for $k=1,2, \ldots, n$, where C is a positive constant depending only on r, K_{1} and K. Applying the estimates (2.11) and (2.12) to the expression (2.10), we have

$$
\left|L_{n}(u)-P^{*}(u)\right| \leqslant \begin{cases}C \omega_{N}\left(\frac{q_{n}}{n}\right)^{\nu-1} \sum_{r=0}^{\nu-1}\left(\frac{q_{n}}{n}\right)^{N \cdots r} \sum_{k=1}^{n}\left|h_{r k}(u)\right| & (v-1=l) \tag{2.13}\\ C \omega_{l}\left(\frac{q_{n}}{n}\right) \sum_{r=0}^{v-1}\left(\frac{q_{n}}{n}\right)^{1-r} \sum_{k=1}^{n}\left|h_{r k}(u)\right| & (v-1>l)\end{cases}
$$

where C is a constant independent of n, x and f, and $\omega_{j}\left(q_{n} / n\right)$ stands for $\omega\left(\left[K q_{n}, K q_{n}\right] ; f^{(j)}, q_{n} / n\right)$. Note that there exists a number n_{0} such that if $n \geqslant n_{0}$ then $\delta(x) \leqslant \kappa q_{n}$ for x with $|x| \leqslant c q_{n}$. Then, by Proposition and the inequality $\max _{|x| \leqslant \delta(x)} e^{v u^{m} / 2} \leqslant C e^{v x^{m} / 2}$ with C independent of x, we completes the proof of Theorem.

References

1. K. Balazs, Convergence of the derivatives of Lagrange interpolating polynomials based on the roots of Hermite polynomials, J. Approx. Theory 53 (1988), 350-353.
2. G. Freud, Über die (C, 1)-Summen der Entwicklungen nach orthogonalen Polynomen, Acta Math. Acad. Sci. Hungar. 14 (1963), 197-208.
3. G. Freud, On weighted polynomial approximation on the whole real axis, Acta Math. Acad. Sci. Hungar. 20 (1969). 223-225.
4. G. Freud, Lagrangesche Interpolation über die Nullstellen der Hermiteschen Orthogonalpolynome, Studia Sci. Math. Hungar. 4 (1969), 179-190.
5. Y. Kanjin and R. Sakal. Pointwise convergence of Hermite-Fejer interpolation of higher order for Freud weights. Tôhoku Math. J. 46 (1994), 181-206.
6. A. Knopfmacher, Pointwise convergence of Lagrange interpolation based at the zeros of orthonormal polynomials with respect to weights on the whole real line, J. Approx. Theory 51 (1987), 231-253.
7. D. Leviatan, The behavior of the derivatives of the algebraic polynomials of best approximation, J. Approx. Theory 35 (1982), 169-176.
8. I. P. Natanson. Interpolation and approximation quadratures, "Constructive Function Theory." Vol. III. Ungar, New York, 1965.
9. P. Nevai, On Lagrange interpolation based on the roots of Hermite polynomials, Acta Math. Acad. Sci. Hungar. 24 (1973), 209-213. [in Russian]
10. P. Nevai, Local theorems on the convergence of Lagrange interpolation based on the roots of Hermite polynomials, Acta Math. Acad. Sci. Hungar. 25 (1974), 34]-361. [in Russian]
11. P. Neval, Géza Freud, orthogonal polynomials and Christoffel functions. A case study, J. Approx. Theory 48 (1986), 3-167.
12. A. F. Timan. "Theory of Approximation of Functions of a Real Variable," Macmillan, New York, 1963.
